Skip to Content
Merck
  • Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells.

Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells.

PloS one (2015-02-24)
Ryan Haryadi, Steven Ho, Yee Jiun Kok, Helen X Pu, Lu Zheng, Natasha A Pereira, Bin Li, Xuezhi Bi, Lin-Tang Goh, Yuansheng Yang, Zhiwei Song
ABSTRACT

Translocation of a nascent protein from the cytosol into the ER mediated by its signal peptide is a critical step in protein secretion. The aim of this work was to develop a platform technology to optimize the signal peptides for high level production of therapeutic antibodies in CHO cells. A database of signal peptides from a large number of human immunoglobulin (Ig) heavy chain (HC) and kappa light chain (LC) was generated. Most of the HC signal peptides contain 19 amino acids which can be divided into three domains and the LC signal peptides contain 22 amino acids. The signal peptides were then clustered according to sequence similarity. Based on the clustering, 8 HC and 2 LC signal peptides were analyzed for their impacts on the production of 5-top selling antibody therapeutics, namely, Herceptin, Avastin, Remicade, Rituxan, and Humira. The best HC and LC signal peptides for producing these 5 antibodies were identified. The optimized signal peptides for Rituxan is 2-fold better compared to its native signal peptides which are available in the public database. Substitution of a single amino acid in the optimized HC signal peptide for Avastin reduced its production significantly. Mass spectrometry analyses revealed that all optimized signal peptides are accurately removed in the mature antibodies. The results presented in this report are particularly important for the production of these 5 antibodies as biosimilar drugs. They also have the potential to be the best signal peptides for the production of new antibodies in CHO cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Sodium 3-mercapto-1-propanesulfonate, technical grade, 90%
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-Glutamine
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Acetonitrile, for preparative HPLC, ≥99.8% (GC)
Sigma-Aldrich
Formic acid, reagent grade, ≥95%