Skip to Content
Merck

A conformational and vibrational study of CF(3)COSCH(2)CH(3).

The Journal of chemical physics (2009-12-09)
María Eliana Defonsi Lestard, María Eugenia Tuttolomondo, Derek A Wann, Heather E Robertson, David W H Rankin, Aida Ben Altabef
ABSTRACT

The molecular structure and conformational properties of S-ethyl trifluorothioacetate, CF(3)COSCH(2)CH(3), were determined in the gas phase by electron diffraction and vibrational spectroscopy (IR and Raman). The experimental investigations were supplemented by ab initio (Moller Plesset of second order) and density functional theory quantum chemical calculations at different levels of theory. Both experimental and theoretical methods reveal two structures with C(s) (anti, anti) and C(1) (anti, gauche) symmetries, although there are disagreements about which is more stable. The electron diffraction intensities are best interpreted with a mixture of 51(3)% anti, anti and 49(3)% anti, gauche conformers. This conformational preference was studied using the total energy scheme and the natural bond orbital scheme. In addition, the infrared spectra of CF(3)COSCH(2)CH(3) are reported for the gas, liquid and solid phases as well as the Raman spectrum of the liquid. Using calculated frequencies as a guide, evidence for both C(s) and C(1) structures is obtained in the IR spectra. Harmonic vibrational frequencies and scaled force fields have been calculated for both conformers.