- Modelling the sulfoxygenation activity of vanadate-dependent peroxidases.
Modelling the sulfoxygenation activity of vanadate-dependent peroxidases.
Vanadate-dependent peroxidases contain, in their active center, vanadate covalently attached to histidine in an overall trigonal-bipyramidal array. We describe here the synthesis and characterization of optically active amino alcohols and their vanadium(V) complexes, and we show that the structural models of the active center thus obtained are also functional models for the sulfide-peroxidase activity of the enzyme in heterogeneous catalysis. The heterogeneous systems were obtained by immobilizing the complexes on silica gel and mesoporous silicas, and by aggregation. The following ligands, ligand precursors, and V compounds have been structurally characterized: (R)-(2-phenylethanol)-(R)-1-phenylethylamine (HL(A)), (R,R)-bis[2-phenyl(ethylmethylether)]ammonium chloride ([L(D)]+Cl(-)), the carbasilatranes (R,R)-methoxy{N,N',N''-2,2',3-[bis(1-phenylethanolato)propyl]amino}silane ((R,R)-Si(OMe)L(E)), (R,R)-methoxy-{N,N',N''-1,2',3-[(1-phenylethanolato)-(2-phenylethanolato)propyl]amino}silane ((R,R)-Si(OMe)L(E')), and [VO(L(F))(OSiMe2(t)Bu)], where H2L(F)=ethylbis(2-hydroxy-2-phenylethyl)amine.