Skip to Content
Merck
  • Association of extreme blood lipid profile phenotypic variation with 11 reverse cholesterol transport genes and 10 non-genetic cardiovascular disease risk factors.

Association of extreme blood lipid profile phenotypic variation with 11 reverse cholesterol transport genes and 10 non-genetic cardiovascular disease risk factors.

Human molecular genetics (2003-09-11)
Alfredo Morabia, Eftihia Cayanis, Michael C Costanza, Barbara M Ross, Maria Sol Flaherty, Gabriela B Alvin, Kamna Das, T Conrad Gilliam
ABSTRACT

This study explored the genetic basis of the combination of extreme blood levels of HDL-C and LDL-C, a well-studied endophenotype for CVD, which has several attractive features as a target for genetic analysis: (1) the trait is moderately heritable; (2) non-genetic risk factors account for a significant but still limited portion of the phenotypic variance; (3) it is known to be moderated by a number of gene products. We exhaustively surveyed 11 candidate genes for allelic variation in a random population-based sample characterized for known CVD risk factors and blood lipid profiles. With the goal of generating specific etiological hypotheses, we compared two groups of subjects with extreme lipid phenotypes, from the same source population, using a case-control design. Cases (n=186) were subjects, within the total sample of 1708 people, who scored in the upper tertile of LDL-C and the lowest tertile of HDL-C, while controls (n=185) scored in the lowest tertile of LDL-C and the upper tertile of HDL-C. We used logistic regression and a four-tiered, systematic model building strategy with internal cross-validation and bootstrapping to investigate the relationships between the trait and 275 genetic variants in the presence of 10 non-genetic risk factors. Our results implicate a subset of nine genetic variants, spanning seven candidate genes, together with five environmental risk factors, in the etiology of extreme lipoprotein phenotypes. We propose a model involving these 14 genetic and non-genetic risk factors for evaluation in future independent studies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lipase from Mucor miehei, powder, slightly brown, ~1 U/mg
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized, powder (fine), 15-25 U/mg
Sigma-Aldrich
Lipase from Rhizopus oryzae, powder (fine), ~10 U/mg
Sigma-Aldrich
Lipase from Candida rugosa, powder, yellow-brown, ≥2 U/mg
Sigma-Aldrich
Lipase from Aspergillus oryzae, lyophilized, powder, white, ~50 U/mg
Sigma-Aldrich
Lipase from Mucor miehei, lyophilized powder, ≥4,000 units/mg solid (using olive oil)
Sigma-Aldrich
Lipase from porcine pancreas, Type II, ≥125 units/mg protein (using olive oil (30 min incubation)), 30-90 units/mg protein (using triacetin)
Sigma-Aldrich
Lipase from porcine pancreas, Type VI-S, ≥20,000 units/mg protein, lyophilized powder
Sigma-Aldrich
Lipase from wheat germ, Type I, lyophilized powder, 5-15 units/mg solid
Sigma-Aldrich
Lipase acrylic resin, ≥5,000 U/g, recombinant, expressed in Aspergillus niger
Sigma-Aldrich
Lipase from Aspergillus oryzae, ≥20,000 U/g
Sigma-Aldrich
Lipase from Pseudomonas sp., Type XIII, lyophilized powder, ≥15 units/mg solid
Sigma-Aldrich
Lipase from Candida rugosa, Type VII, ≥700 unit/mg solid
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized powder, ≥40,000 units/mg protein
Sigma-Aldrich
Lipase from Rhizopus niveus, powder (fine), ≥1.5 U/mg
Sigma-Aldrich
Lipase from Candida sp., recombinant, expressed in Aspergillus niger
Sigma-Aldrich
Lipase B Candida antarctica, recombinant from Aspergillus oryzae, powder, beige, ~9 U/mg
Sigma-Aldrich
Lipase A Candida antarctica, recombinant from Aspergillus oryzae, powder, beige, ~2 U/mg
Sigma-Aldrich
Lipase from Pseudomonas cepacia, powder, light beige, ≥30 U/mg
Sigma-Aldrich
Lipase from Aspergillus niger, powder (fine), ~200 U/g
Sigma-Aldrich
Lipase from Mucor javanicus, lyophilized powder, ≥300 units/mg solid (using olive oil)
Sigma-Aldrich
Lipase immobilized from Candida antarctica, beads, slightly brown, >2 U/mg