Skip to Content
Merck
  • Effect of processed and red meat on endogenous nitrosation and DNA damage.

Effect of processed and red meat on endogenous nitrosation and DNA damage.

Carcinogenesis (2009-06-06)
Annemiek M C P Joosen, Gunter G C Kuhnle, Sue M Aspinall, Timothy M Barrow, Emmanuelle Lecommandeur, Amaya Azqueta, Andrew R Collins, Sheila A Bingham
ABSTRACT

Haem in red meat (RM) stimulates the endogenous production of mutagenic nitroso compounds (NOC). Processed (nitrite-preserved red) meat additionally contains high concentrations of preformed NOC. In two studies, of a fresh RM versus a vegetarian (VEG) diet (six males and six females) and of a nitrite-preserved red meat (PM) versus a VEG diet (5 males and 11 females), we investigated whether processing of meat might increase colorectal cancer risk by stimulating nitrosation and DNA damage. Meat diets contained 420 g (males) or 366 g (females) meat/per day. Faecal homogenates from day 10 onwards were analysed for haem and NOC and associated supernatants for genotoxicity. Means are adjusted for differences in male to female ratios between studies. Faecal NOC concentrations on VEG diets were low (2.6 and 3.5 mmol/g) but significantly higher on meat diets (PM 175 +/- 19 nmol/g versus RM 185 +/- 22 nmol/g; P = 0.75). The RM diet resulted in a larger proportion of nitrosyl iron (RM 78% versus PM 54%; P < 0.0001) and less nitrosothiols (RM 12% versus PM 19%; P < 0.01) and other NOC (RM 10% versus PM 27%; P < 0.0001). There was no statistically significant difference in DNA breaks induced by faecal water (FW) following PM and RM diets (P = 0.80). However, PM resulted in higher levels of oxidized pyrimidines (P < 0.05). Surprisingly, VEG diets resulted in significantly more FW-induced DNA strand breaks than the meat diets (P < 0.05), which needs to be clarified in further studies. Meats cured with nitrite have the same effect as fresh RM on endogenous nitrosation but show increased FW-induced oxidative DNA damage.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trypsin-EDTA solution, 1 ×, sterile-filtered, BioReagent, suitable for cell culture, 500 BAEE units porcine trypsin and 180 μg EDTA, 4Na per ml in Dulbecco′s PBS without calcium and magnesium
Sigma-Aldrich
Trypsin-EDTA solution, 10 ×, sterile-filtered, BioReagent, suitable for cell culture, 5.0 g porcine trypsin and 2 g EDTA, 4Na per liter of 0.9% sodium chloride
Sigma-Aldrich
Penicillin-Streptomycin, Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin/mL, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Penicillin-Streptomycin, with 10,000 units penicillin and 10 mg streptomycin per mL in 0.9% NaCl, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Trypsin-EDTA solution, 0.25%, sterile-filtered, BioReagent, suitable for cell culture, 2.5 g porcine trypsin and 0.2 g EDTA, 4Na per liter of Hanks′ Balanced Salt Solution with phenol red
Sigma-Aldrich
Penicillin-Streptomycin, Solution Stabilized, with 5,000 units penicillin and 5mg streptomycin/mL, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Trypsin-EDTA solution, 1 ×, sterile; sterile-filtered, BioReagent, suitable for cell culture, 0.5 g porcine trypsin and 0.2 g EDTA, 4Na per liter of Hanks′ Balanced Salt Solution with phenol red