Skip to Content
Merck
  • Inverse Salt Sensitivity of Blood Pressure Is Associated with an Increased Renin-Angiotensin System Activity.

Inverse Salt Sensitivity of Blood Pressure Is Associated with an Increased Renin-Angiotensin System Activity.

Biomedicines (2022-11-12)
John J Gildea, Peng Xu, Katie A Schiermeyer, Wei Yue, Robert M Carey, Pedro A Jose, Robin A Felder
ABSTRACT

High and low sodium diets are associated with increased blood pressure and cardiovascular morbidity and mortality. The paradoxical response of elevated BP in low salt diets, aka inverse salt sensitivity (ISS), is an understudied vulnerable 11% of the adult population with yet undiscovered etiology. A linear relationship between the number of single nucleotide polymorphisms (SNPs) in the dopamine D2 receptor (DRD2, rs6276 and 6277), and the sodium myo-inositol cotransporter 2 (SLC5A11, rs11074656), as well as decreased expression of these two genes in urine-derived renal proximal tubule cells (uRPTCs) isolated from clinical study participants suggest involvement of these cells in ISS. Insight into this newly discovered paradoxical response to sodium is found by incubating cells in low sodium (LS) conditions that unveil cell physiologic differences that are then reversed by mir-485-5p miRNA blocker transfection and bypassing the genetic defect by DRD2 re-expression. The renin-angiotensin system (RAS) is an important counter-regulatory mechanism to prevent hyponatremia under LS conditions. Oversensitive RAS under LS conditions could partially explain the increased mortality in ISS. Angiotensin-II (AngII, 10 nmol/L) increased sodium transport in uRPTCs to a greater extent in individuals with ISS than SR. Downstream signaling of AngII is verified by identifying lowered expression of nuclear factor erythroid 2-related factor 2 (NRF2), CCCTC-binding factor (CTCF), and manganese-dependent mitochondrial superoxide dismutase (SOD2) only in ISS-derived uRPTCs and not SR-derived uRPTCs when incubated in LS conditions. We conclude that DRD2 and SLC5A11 variants in ISS may cause an increased low sodium sensitivity to AngII and renal sodium reabsorption which can contribute to inverse salt-sensitive hypertension.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Dopamine D₂ Receptor Rabbit pAb, lyophilized, Calbiochem®