Skip to Content
Merck

Loss of PHF6 leads to aberrant development of human neuron-like cells.

Scientific reports (2020-11-06)
Anna Fliedner, Anne Gregor, Fulvia Ferrazzi, Arif B Ekici, Heinrich Sticht, Christiane Zweier
ABSTRACT

Pathogenic variants in PHD finger protein 6 (PHF6) cause Borjeson-Forssman-Lehmann syndrome (BFLS), a rare X-linked neurodevelopmental disorder, which manifests variably in both males and females. To investigate the mechanisms behind overlapping but distinct clinical aspects between genders, we assessed the consequences of individual variants with structural modelling and molecular techniques. We found evidence that de novo variants occurring in females are more severe and result in loss of PHF6, while inherited variants identified in males might be hypomorph or have weaker effects on protein stability. This might contribute to the different phenotypes in male versus female individuals with BFLS. Furthermore, we used CRISPR/Cas9 to induce knockout of PHF6 in SK-N-BE (2) cells which were then differentiated to neuron-like cells in order to model nervous system related consequences of PHF6 loss. Transcriptome analysis revealed a broad deregulation of genes involved in chromatin and transcriptional regulation as well as in axon and neuron development. Subsequently, we could demonstrate that PHF6 is indeed required for proper neuron proliferation, neurite outgrowth and migration. Impairment of these processes might therefore contribute to the neurodevelopmental and cognitive dysfunction in BFLS.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-c-Myc antibody, Mouse monoclonal, clone 9E10, purified from hybridoma cell culture
Sigma-Aldrich
Anti-PHF6 antibody produced in rabbit, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-HA antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution