- Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene.
Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene.
The prfA gene of Listeria monocytogenes encodes a protein that activates transcription of the listeriolysin gene (lisA). In order to explore the role of the prfA gene product in the pathogenesis of listerial infection, we constructed a site-directed insertion mutation in prfA by the chromosomal integration of a novel suicide vector containing a portion of the prfA coding region. This mutation not only transcriptionally silenced the listeriolysin (lisA) gene but also abrogated production of specific RNA transcripts corresponding to the phosphatidylinositol-specific phospholipase C (pic) and metalloprotease (mpl) genes, two further virulence gene products expressed only by pathogenic Listeria strains. The strain was also found to be avirulent when tested in a mouse model of listerial infection. The concomitant loss of multiple characteristics such as production of LisA, Pic, Mpl, and loss of virulence in a mouse infection model is the result of a mutation in a single gene and demonstrates that the prfA gene product is a positive regulator of multiple virulence determinants in L. monocytogenes.