Skip to Content
Merck
  • Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype.

Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype.

Scientific reports (2017-02-12)
Shawn P Carey, Karen E Martin, Cynthia A Reinhart-King
ABSTRACT

A critical step in breast cancer progression is local tissue invasion, during which cells pass from the epithelial compartment to the stromal compartment. We recently showed that malignant leader cells can promote the invasion of otherwise non-invasive epithelial follower cells, but the effects of this induced-invasion phenomenon on follower cell phenotype remain unclear. Notably, this process can expose epithelial cells to the stromal extracellular matrix (ECM), which is distinct from the ECM within the normal epithelial microenvironment. Here, we used a 3D epithelial morphogenesis model in which cells were cultured in biochemically and mechanically defined matrices to examine matrix-mediated gene expression and the associated phenotypic response. We found that 3D collagen matrix promoted expression of mesenchymal genes including MT1-MMP, which was required for collagen-stimulated invasive behavior. Epithelial invasion required matrix anchorage as well as signaling through Src, PI3K, and Rac1, and increasingly stiff collagen promoted dispersive epithelial cell invasion. These results suggest that leader cell-facilitated access to the stromal ECM may trigger an invasive phenotype in follower epithelial cells that could enable them to actively participate in local tissue invasion.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human MMP14
Sigma-Aldrich
Anti-Vimentin antibody, Mouse monoclonal, clone V9, purified from hybridoma cell culture
Sigma-Aldrich
PP1, ≥98% (HPLC)