Skip to Content
Merck
  • Cyclometalated iridium(III) bipyridyl-phenylenediamine complexes with multicolor phosphorescence: synthesis, electrochemistry, photophysics, and intracellular nitric oxide sensing.

Cyclometalated iridium(III) bipyridyl-phenylenediamine complexes with multicolor phosphorescence: synthesis, electrochemistry, photophysics, and intracellular nitric oxide sensing.

ChemMedChem (2014-03-20)
Wendell Ho-Tin Law, Kam-Keung Leung, Lawrence Cho-Cheung Lee, Che-Shan Poon, Hua-Wei Liu, Kenneth Kam-Wing Lo
ABSTRACT

We present a new class of phosphorescent cyclometalated iridium(III) bipyridyl-phenylenediamine complexes [Ir(N^C)2 (bpy-DA)](PF6 ) (bpy-DA=4-(N-(2-amino-5-methoxyphenyl)aminomethyl)-4'-methyl-2,2'-bipyridine; HN^C=2-(2,4-difluorophenyl)pyridine (Hdfppy) (1 a), 2-phenylpyridine (Hppy) (2 a), 2-phenylquinoline (Hpq) (3 a), 2-phenylcinchoninic acid methyl ester (Hpqe) (4 a)) and their triazole counterparts [Ir(N^C)2 (bpy-T)](PF6 ) (bpy-T=4-((6-methoxybenzotriazol-1-yl)methyl)-4'-methyl-2,2'-bipyridine; HN^C=Hdfppy (1 b), Hppy (2 b), Hpq (3 b), Hpqe (4 b)). Upon photoexcitation, the diamine complexes exhibited fairly weak green to red phosphorescence under ambient conditions whereas the triazole derivatives emitted strongly. The photophysical properties of complexes 2 a and 2 b have been studied in more detail. Upon protonation, the diamine complex 2 a displayed increased emission intensity, but the emission properties of its triazole counterpart complex 2 b were independent on the pH value of the solution. Also, complex 2 a was found to be readily converted into complex 2 b upon reaction with NO under aerated conditions, resulting in substantial emission enhancement of the solution. The reaction was highly specific toward NO over other reactive oxygen and nitrogen species (RONS) as revealed by spectroscopic analyses. The lipophilicity and cellular uptake efficiency of the diamine complexes have been examined and correlated to their molecular structures. Also, cell-based assays showed that these complexes were noncytotoxic toward human cervix epithelioid carcinoma (HeLa) cells (at 10 μM, 4 h, percentage survival ≈80-95%). Additionally, the diamine complexes have been used to visualize intracellular NO generated both exogenously in HeLa cells and endogenously in RAW 264.7 murine macrophages by laser-scanning confocal microscopy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Iodomethane, contains copper as stabilizer, ReagentPlus®, 99%
Sigma-Aldrich
4-Amino-3-nitrophenol, 98%
Sigma-Aldrich
Sodium cyanoborohydride solution, 5.0 M in 1 M NaOH
Sigma-Aldrich
Sodium cyanoborohydride, reagent grade, 95%
Sigma-Aldrich
1-Octanol, ≥98%, FCC, FG
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
2-Phenylpyridine, 98%
Sigma-Aldrich
4,4′-Dimethyl-2,2′-dipyridyl, 99%
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium bicarbonate, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, ≥99%, AR grade
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Di-tert-butyl dicarbonate, ReagentPlus®, ≥99%
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium metabisulfite, tested according to Ph. Eur.
Sigma-Aldrich
Di-tert-butyl dicarbonate, ≥98.0% (GC)
Sigma-Aldrich
4,4′-Dimethyl-2,2′-dipyridyl, 99.5%, purified by sublimation
Sigma-Aldrich
2-(2,4-Difluorophenyl)pyridine, 97%
Sigma-Aldrich
1-Octanol, natural, ≥98%, FCC
Sigma-Aldrich
1-Octanol, anhydrous, ≥99%
Sigma-Aldrich
Sodium cyanoborohydride solution, 1.0 M in THF
Sigma-Aldrich
Sodium metabisulfite, ACS reagent, ≥97.0%
Sigma-Aldrich
Di-tert-butyl dicarbonate, ReagentPlus®, 99%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture