Skip to Content
Merck
  • Synthesis of a reactive polymethacrylate capillary monolith and its use as a starting material for the preparation of a stationary phase for hydrophilic interaction chromatography.

Synthesis of a reactive polymethacrylate capillary monolith and its use as a starting material for the preparation of a stationary phase for hydrophilic interaction chromatography.

Journal of chromatography. A (2015-04-23)
Çiğdem Kip, Damla Erkakan, Aslıhan Gökaltun, Bekir Çelebi, Ali Tuncel
ABSTRACT

Poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(HPMA-Cl-co-EDMA) capillary monolith was proposed as a reactive starting material with tailoring flexibility for the preparation of monolithic stationary phases. The reactive capillary monolith was synthesized by free radical copolymerization of 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA). The mean pore size, the specific surface area and the permeability of poly(HPMA-Cl-co-EDMA) monoliths were controlled by adjusting porogen/monomer volume ratio, porogen composition and polymerization temperature. The porogen/monomer volume ratio was found as the most effective factor controlling the porous properties of poly(HPMA-Cl-co-EDMA) monolith. Triethanolamine (TEA-OH) functionalized polymethacrylate monoliths were prepared by using the reactive chloropropyl group of poly(HPMA-Cl-co-EDMA) monolith via one-pot and simple post-functionalization process. Poly(HPMA-Cl-co-EDMA) monolith reacted with TEA-OH was evaluated as a stationary phase in nano-hydrophilic interaction chromatography (nano-HILIC). Nucleotides, nucleosides and benzoic acid derivatives were satisfactorily separated with the plate heights up to 20μm. TEA-OH attached-poly(HPMA-Cl-co-EDMA) monolith showed a reproducible and stable retention behaviour in nano-HILIC runs. However, a decrease in the column performance (i.e. an increase in the plate height) was observed with the increasing retention factor. Hence "retention-dependent column efficiency" behaviour was shown for HILIC mode using the chromatographic data collected with the polymer based monolith synthesized.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ethylene glycol dimethacrylate, 98%, contains 90-110 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
2-Propanol, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
Acetonitrile, for chromatography
Sigma-Aldrich
2-Propanol, suitable for HPLC
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 1000
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis