Skip to Content
Merck
  • Chemical and sensory effects of storing sauvignon Blanc wine in colored bottles under artificial light.

Chemical and sensory effects of storing sauvignon Blanc wine in colored bottles under artificial light.

Journal of agricultural and food chemistry (2014-07-02)
Alejandro Cáceres-Mella, Daniela Flores-Valdivia, V Felipe Laurie, Remigio López-Solís, Álvaro Peña-Neira
ABSTRACT

The chemical and sensory effects of storing Sauvignon Blanc in colored bottles and exposing them to artificial light were examined. The colors of the bottles chosen were Dead Leaf Green, Antique Green, Amber, and Flint. The light was provided by fluorescent tubes with a regime of 16 h of exposure during 8 months of storage. The results indicated that the wine's chemical composition was affected by the type of bottle used. The Flint bottle presented the lowest concentration of total phenols. Yellow coloration was not dependent on the bottle color, as the wine in darker bottles (Amber, Antique Green, and Dead Leaf Green) had considerably more yellow color development than the wine in clear bottles. With regard to the sensory analyses performed, a trend showing an increase in color intensity and a decrease in overall aromas depending on the bottle color was observed. The wine's aromatic description changed significantly during its storage under artificial light conditions, demonstrating a decrease in vegetal aromas and an increase in citrus and tropical flavors that was dependent on the bottle color.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, for chromatography
Sigma-Aldrich
Ethyl acetate, suitable for HPLC
Sigma-Aldrich
Ethyl acetate, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Ethyl acetate, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethyl acetate, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
L-Lysine monohydrochloride, SAJ special grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
Ethyl acetate, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 1000
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Supelco
(+)-Catechin, analytical standard
Millipore
Bifido Selective Supplement B, suitable for microbiology
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Supelco
Ethyl acetate, analytical standard
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Supelco
L-Lysine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG