Skip to Content
Merck
  • A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology.

A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology.

PLoS biology (2015-08-14)
Marcel Ander, Sivaraman Subramaniam, Karim Fahmy, A Francis Stewart, Erik Schäffer
ABSTRACT

Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recognized by Redβ monomers that weakly hold single DNA strands together. Once annealing begins, dimerization of Redβ clamps the double-stranded region and nucleates nucleoprotein filament growth. In this manner, DNA clamping ensures and secures a successful detection for DNA sequence homology. The clamp is characterized by a structural change of Redβ and a remarkable stability against force up to 200 pN. Our findings not only present a detailed explanation for SSAP action but also identify the DNA clamp as a very stable, noncovalent, DNA-protein interaction.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Polytetrafluoroethylene preparation, 60 wt % dispersion in H2O
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 200 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), ≤12 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), 1 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 35 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, >40 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), beads
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, ≥350 μm particle size