Skip to Content
Merck
  • Design, synthesis and structure-activity relationship studies of novel and diverse cyclooxygenase-2 inhibitors as anti-inflammatory drugs.

Design, synthesis and structure-activity relationship studies of novel and diverse cyclooxygenase-2 inhibitors as anti-inflammatory drugs.

Journal of enzyme inhibition and medicinal chemistry (2014-02-13)
Shigeo Hayashi, Naomi Ueno, Akio Murase, Junji Takada
ABSTRACT

Because of the pivotal role of cyclooxygenase (COX) in the inflammatory processes, non-steroidal anti-inflammatory drugs (NSAIDs) that suppress COX activities have been used clinically for the treatment of inflammatory diseases/syndromes; however, traditional NSAIDs exhibit serious side-effects such as gastrointestinal damage and hyper sensitivity owing to their COX-1 inhibition. Also, COX-2 inhibition-derived suppressive or preventive effects against initiation/proliferation/invasion/motility/recurrence/metastasis of various cancers/tumours such as colon, gastric, skin, lung, liver, pancreas, breast, prostate, cervical and ovarian cancers are significant. In this study, design, synthesis and structure-activity relationship (SAR) of various novel {2-[(2-, 3- and/or 4-substituted)-benzoyl, (bicyclic heterocycloalkanophenyl)carbonyl or cycloalkanecarbonyl]-(5- or 6-substituted)-1H-indol-3-yl}acetic acid analogues were investigated to seek and identify various chemotypes of potent and selective COX-2 inhibitors for the treatment of inflammatory diseases, resulting in the discovery of orally potent agents in the peripheral-inflammation model rats. The SARs and physicochemical properties for the analogues are described as significant findings. For graphical abstract: see Supplementary Material. ( www.informahealthcare.com/enz ).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Sigma-Aldrich
N,N-Dimethylformamide, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Ammonium chloride, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Diethyl ether, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Sodium hydrogencarbonate, −40-+140 mesh, ≥95%
Sigma-Aldrich
Water, Deionized
Sigma-Aldrich
Diethyl ether, reagent grade, ≥98%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Diethyl ether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%