Skip to Content
Merck
  • PD-L1 is overexpressed on breast cancer stem cells through notch3/mTOR axis.

PD-L1 is overexpressed on breast cancer stem cells through notch3/mTOR axis.

Oncoimmunology (2020-04-22)
Fatmah A Mansour, Amer Al-Mazrou, Falah Al-Mohanna, Monther Al-Alwan, Hazem Ghebeh
ABSTRACT

The T-cell inhibitory molecule PD-L1 is expressed on a fraction of breast cancer cells. The distribution of PD-L1 on the different subpopulations of breast cancer cells is not well-defined. Our aim was to study the expression level of PD-L1 on breast cancer stem-like (CSC-like) cells and their differentiated-like counterparts. We used multi-parametric flow cytometry to measure PD-L1 expression in different subpopulations of breast cancer cells. Pathway inhibitors, quantitative immunofluorescence, cell sorting, and western blot were used to investigate the underlying mechanism of PD-L1 upregulation in CSC-like cells. Specifically, PD-L1 was overexpressed up to three folds on breast CSC-like cells compared with more differentiated-like cancer cells. Functional in vitro and in vivo assays show higher stemness of PD-L1hi as compared with PD-L1lo cells. Among different pathways examined, PD-L1 expression on CSCs was partly dependant on Notch, and/or PI3K/AKT pathway activation. The effect of Notch inhibitors on PD-L1 overexpression in CSCs was completely abrogated upon mTOR knockdown. Specific knockdown of different Notch receptors shows Notch3 as a mediator for PD-L1 overexpression on CSCs and important for maintaining their stemness. Indeed, Notch3 was found to be overexpressed on PD-L1hi cells and specific knockdown of Notch3 abolished the effect of notch inhibitors and ligands on PD-L1 expression as well as mTOR activation. Our data demonstrated that overexpression of PD-L1 on CSCs is partly mediated by the notch pathway through Notch3/mTOR axis. We propose that these findings will help in a better design of anti-PD-L1 combination therapies to treat breast cancer effectively.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
LY 294002, LY294002, CAS 154447-36-6, is a cell-permeable, potent, reversible, and specific inhibitor of PI 3-kinase ((IC₅₀ = 1.4 µM). Acts on the ATP-binding site.
Sigma-Aldrich
U0126, U0126, CAS 109511-58-2, is a potent and specific inhibitor of MEK1 (IC₅₀ = 72 nM) and MEK2 (IC₅₀ = 58 nM). The inhibition is noncompetitive with respect to both ATP and ERK.
Sigma-Aldrich
NF-κB Activation Inhibitor, InSolution, ≥98%
Sigma-Aldrich
TGF-β RI Kinase Inhibitor VI, SB431542, TGF-β RI Kinase Inhibitor VI, SB431542, CAS 301836-41-9, is a cell-permeable inhibitor of SMAD2 phosphorylation. Inhibits the activity of ALK4 and ALK5 (IC₅₀ = 140 nM and 94 nM, respectively).