Skip to Content
Merck
  • Determination of traces of rubidium in high purity cesium chloride by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier.

Determination of traces of rubidium in high purity cesium chloride by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier.

Analytica chimica acta (2007-03-28)
K Dash, S Thangavel, S C Chaurasia, J Arunachalam
ABSTRACT

The use of boric acid as a modifier for the determination of trace amount of rubidium in high purity cesium chloride matrix by electrothermal atomic absorption is described. It was found that the negative influence of the chloride matrix could not be eliminated using stabilized temperature platform (STPF) alone. Due to the high dissociation energy (D(0)=427 kJ mol(-1)) of rubidium chloride, it was difficult to dissociate in the gas phase and hence is lost. Elimination of interferences was achieved by the addition of boric acid as a chemical modifier. Diluted cesium chloride samples (5%, m/v) were analyzed applying the standard addition method. The characteristic mass of 24 pg was obtained. The detection limit of the proposed method is around 26 ng g(-1). The developed method was applied to the determination of traces of rubidium in high purity cesium chloride samples. The data obtained by this method were in good agreement with those obtained by other independent method like FAAS.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Rubidium chloride, BioUltra, for molecular biology, ≥99.0% (AT)
Sigma-Aldrich
Rubidium chloride, 99.95% trace metals basis
Sigma-Aldrich
Rubidium chloride, ReagentPlus®, ≥99.0% (metals basis)
Sigma-Aldrich
Rubidium chloride, 99.8% trace metals basis