Skip to Content
Merck
  • The mechanism of honokiol-induced intracellular Ca(2+) rises and apoptosis in human glioblastoma cells.

The mechanism of honokiol-induced intracellular Ca(2+) rises and apoptosis in human glioblastoma cells.

Chemico-biological interactions (2014-08-12)
Wei-Zhe Liang, Chiang-Ting Chou, Hong-Tai Chang, Jin-Shiung Cheng, Daih-Huang Kuo, Kuang-Chung Ko, Ni-Na Chiang, Ru-Fang Wu, Pochuen Shieh, Chung-Ren Jan
ABSTRACT

Honokiol, an active constituent of oriental medicinal herb Magnolia officinalis, caused Ca(2+) mobilization and apoptosis in different cancer cells. In vivo, honokiol crossed the blood-brain or -cerebrospinal fluid barrier, suggesting that it may be an effective drug for the treatment of brain tumors, including glioblastoma. This study examined the effect of honokiol on intracellular Ca(2+) concentration ([Ca(2+)]i) and apoptosis in DBTRG-05MG human glioblastoma cells. Honokiol concentration-dependently induced a [Ca(2+)]i rise. The signal was decreased partially by removal of extracellular Ca(2+). Honokiol-triggered [Ca(2+)]i rise was not suppressed by store-operated Ca(2+) channel blockers (nifedipine, econazole, SK&F96365) and the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate (PMA), but was inhibited by the PKC inhibitor GF109203X. GF109203X-induced inhibition was not altered by removal of extracellular Ca(2+). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished honokiol-induced [Ca(2+)]i rise. Conversely, incubation with honokiol abolished TG or BHQ-induced [Ca(2+)]i rise. Inhibition of phospholipase C (PLC) with U73122 abolished honokiol-induced [Ca(2+)]i rise. Honokiol (20-80μM) reduced the cell viability, which was not reversed by prechelating cytosolic Ca(2+) with BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester). Honokiol (20-60μM) enhanced reactive oxygen species (ROS) production, decreased mitochondrial membrane potential, released cytochrome c, and activated caspase-9/caspase-3. Together, honokiol induced a [Ca(2+)]i rise by inducing PLC-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via PKC-dependent, non store-operated Ca(2+) channels. Moreover, honokiol activated the mitochondrial pathway of apoptosis in DBTRG-05MG human glioblastoma cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Honokiol, ≥98% (HPLC), powder
Pricing and availability is not currently available.
Honokiol, European Pharmacopoeia (EP) Reference Standard
Pricing and availability is not currently available.
Supelco
Honokiol, analytical standard
Pricing and availability is not currently available.