Skip to Content
Merck
  • Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice.

Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice.

Nature communications (2022-02-05)
Emmanouela Kallergi, Akrivi-Dimitra Daskalaki, Angeliki Kolaxi, Come Camus, Evangelia Ioannou, Valentina Mercaldo, Per Haberkant, Frank Stein, Kyriaki Sidiropoulou, Yannis Dalezios, Mikhail M Savitski, Claudia Bagni, Daniel Choquet, Eric Hosy, Vassiliki Nikoletopoulou
ABSTRACT

The pruning of dendritic spines during development requires autophagy. This process is facilitated by long-term depression (LTD)-like mechanisms, which has led to speculation that LTD, a fundamental form of synaptic plasticity, also requires autophagy. Here, we show that the induction of LTD via activation of NMDA receptors or metabotropic glutamate receptors initiates autophagy in the postsynaptic dendrites in mice. Dendritic autophagic vesicles (AVs) act in parallel with the endocytic machinery to remove AMPA receptor subunits from the membrane for degradation. During NMDAR-LTD, key postsynaptic proteins are sequestered for autophagic degradation, as revealed by quantitative proteomic profiling of purified AVs. Pharmacological inhibition of AV biogenesis, or conditional ablation of atg5 in pyramidal neurons abolishes LTD and triggers sustained potentiation in the hippocampus. These deficits in synaptic plasticity are recapitulated by knockdown of atg5 specifically in postsynaptic pyramidal neurons in the CA1 area. Conducive to the role of synaptic plasticity in behavioral flexibility, mice with autophagy deficiency in excitatory neurons exhibit altered response in reversal learning. Therefore, local assembly of the autophagic machinery in dendrites ensures the degradation of postsynaptic components and facilitates LTD expression.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Wortmannin, from Penicillium funiculosum, ≥98% (HPLC and TLC)
Sigma-Aldrich
Anti-ATG13 antibody produced in rabbit, ~1.0 mg/mL, affinity isolated antibody
Sigma-Aldrich
Anti-LC3B antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-SQSTM1 Mouse mAb (2C11), liquid, clone 2C11, Calbiochem®
Sigma-Aldrich
Bafilomycin A1 from Streptomyces griseus, ≥90% (HPLC)
Sigma-Aldrich
Cytoplasmic Dynein Inhibitor, Ciliobrevin D, Ciliobrevin D is a cell-permeable, reversible, and specific blocker of AAA+ ATPase motor cytoplasmic dynein. Disrupts spindle pole focusing and kinetochore-microtubule attachment (~10 to 40 µM).
Sigma-Aldrich
Anti-Glutamate receptor 1 Antibody, from rabbit, purified by affinity chromatography
Sigma-Aldrich
Normal Rabbit IgG, Normal Rabbit IgG Polyclonal Antibody control validated for use in Immunoprecipitation & Western Blotting.
Sigma-Aldrich
Anti-Glutamate Receptor 2 & 3 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
SBI-0206965, ≥98% (HPLC)