Skip to Content
Merck
  • Effect of intraoral aging on the setting status of resin composite and glass ionomer orthodontic adhesives.

Effect of intraoral aging on the setting status of resin composite and glass ionomer orthodontic adhesives.

American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics (2014-04-08)
Anna Iliadi, Stefan Baumgartner, Athanasios E Athanasiou, Theodore Eliades, George Eliades
ABSTRACT

The aim of this study was to assess the effect of intraoral aging on the setting status of a resin composite and a glass ionomer adhesive, relative to control specimens stored in water. Metallic brackets were bonded with resin composite orthodontic adhesive (Transbond XT; 3M Unitek, Monrovia, Calif) or a glass ionomer cement (Fuji I; GC, Tokyo, Japan) to recently extracted premolars and kept in water for 6 months. The same materials were also bonded to the premolars of orthodontic patients. After 6 months, the teeth were carefully extracted, with the brackets intact on their buccal surfaces. All teeth were embedded in epoxy resin and sectioned buccolingually. Fourier transform infrared microscopy and Raman microscopy were used for the estimation of the degree of cure in the composite and the salt yield in the glass ionomer adhesives. The control samples of the composite showed significantly lower degrees of cure than did the retrieved specimens (52.40% ± 3.21% vs 57.62% ± 1.32% by Fourier transform infrared microscopy, and 61.40% ± 2.61% vs 67.40% ± 3.44% by Raman microscopy). Raman microscopy significantly overestimated the degree of cure and failed to provide reliable information for the salt yield in the glass ionomer cement. Fourier transform infrared microscopy showed increased, but no statistically significant difference in, aluminum-carboxylate salts in the retrieved specimens. Enhanced oxidation of residual carbon-carbon bonds in the composite and slightly increased dissolution of the weaker calcium-salt phase in the glass ionomer cement were the main differences in the intraorally aged specimens in comparison with the specimens stored in water.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX ultra, from peat, corresponds U.S. Food chemicals codex (3rd Ed.), steam activated and acid washed, highly purified, powder
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, for gas purification, steam activated, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Supelco
Activated charcoal, for the determination of AOX, 50-150 μm particle size
Supelco
Activated charcoal, powder
Supelco
Activated charcoal, puriss. p.a., powder
Sigma-Aldrich
Activated charcoal, suitable for cell culture, suitable for plant cell culture
Carbon, foil, 100x100mm, thickness 0.5mm, rigid graphite, fine grain size, 99.997%
Carbon, foil, 100x100mm, thickness 0.2mm, flexible graphite, 99.8%
Carbon, foil, 100x100mm, thickness 0.25mm, rigid graphite, fine grain size, 99.95%
Carbon, rod, 300mm, diameter 3.0mm, graphite, 100%
Carbon, foil, 150x150mm, thickness 1.0mm, flexible graphite, 99.8%
Carbon, tube, graphite, 150mm, outside diameter 3.18mm, inside diameter 1.18mm, wall thickness 1.0mm, 99.95%
Carbon, microleaf, 25x70mm, thinness 0.50μm, specific density 100μg/cm2, temporary glass support, annealed, 99.997%
Carbon, rod, 50mm, diameter 1.5mm, graphite, 100%
Carbon, foil, 200x200mm, thickness 1.0mm, rigid graphite, fine grain size, 99.95%
Carbon, foil, 50x50mm, thickness 0.2mm, pyrolytic graphite, 99.99%
Carbon, rod, 100mm, diameter 13.0mm, graphite, 100%
Carbon, foil, 25x25mm, thickness 0.25mm, rigid graphite, fine grain size, 99.997%
Carbon, rod, 150mm, diameter 25mm, graphite, 99.95%
Carbon, foil, 25x25mm, thickness 0.5mm, rigid graphite, fine grain size, 99.95%
Carbon, foil, 6mm disks, thickness 0.2mm, flexible graphite, 99.8%
Carbon, foil, 150x150mm, thickness 5.0mm, rigid graphite, medium grain size, 99.5%
Carbon, rod, 300mm, diameter 5.0mm, graphite, 100%
Carbon, foil, 50x50mm, thickness 0.25mm, rigid graphite, fine grain size, 99.95%
Carbon, microleaf, 50x70mm, thinness 2.5μm, specific density 500μg/cm2, 99.997%
Carbon, foil, 25x25mm, thickness 0.125mm, rigid graphite, fine grain size, 99.95%