Accéder au contenu
Merck

Reduced delayed rectifier K+ current, altered electrophysiology, and increased ventricular vulnerability in MLP-deficient mice.

Journal of cardiac failure (2007-10-10)
Ajmal Gardiwal, Gunnar Klein, Kirsten Kraemer, Tolga Durgac, Thorben Koenig, Michael Niehaus, Joerg Heineke, Bahram Mohammadi, Klaus Krampfl, Arnd Schaefer, Kai C Wollert, Thomas Korte
RÉSUMÉ

Mice with a knockout (KO) of muscle LIM protein (MLP) exhibit many morphologic and clinical features of human cardiomyopathy. In humans, MLP-expression is downregulated both in ischemic and dilative cardiomyopathy. In this study, we investigated the effects of MLP on the electrophysiologic phenotype in vivo and on outward potassium currents. MLP-deficient (MLPKO) and wild-type (MLPWT) mice were subjected to long-term electrocardiogram (ECG) recording and in vivo electrophysiologic study. The whole-cell, patch-clamp technique was applied to measure voltage dependent outward K+ currents in isolated cardiomyocytes. Long-term ECG revealed a significant prolongation of RR mean (108 +/- 9 versus 99 +/- 5 ms), P (16 +/- 3 versus 14 +/- 1 ms), QRS (17 +/- 3 versus 13 +/- 1 ms), QT (68 +/- 8 versus 46 +/- 7 ms), QTc (66 +/- 6 versus 46 +/- 7 ms), JT (51 +/- 7 versus 34 +/- 7 ms), and JTc (49 +/- 5 versus 33 +/- 7 ms) in MLPKO versus MLPWT mice (P < .05). During EP study, QT (80 +/- 8 versus 58 +/- 7 ms), QTc (61 +/- 6 versus 45 +/- 5 ms), JT (62 +/- 9 versus 43 +/- 6 ms), and JTc (47 +/- 5 versus 34 +/- 5 ms) were also significantly prolonged in MLPKO mice (P < .05). Nonsustained VT was inducible in 9/16 MLPKO versus 2/15 MLPWT mice (P < .05). Analysis of outward K+ currents in revealed a significantly reduced density of the slowly inactivating outward K+ current IK, slow in MLPKO mice (11 +/- 5 pA/pF versus 18 +/- 7 pA/pF; P < .05). Mice with KO of MLP exhibit significant prolongation of atrial and ventricular conduction and an increased ventricular vulnerability. A reduction in repolarizing outward K+ currents may be responsible for these alterations.