Accéder au contenu
Merck

A strategy to modulate the electrophoretic behavior in plastic microchips using sodium polystyrene sulfonate.

Journal of chromatography. A (2016-12-03)
Jinxiu Guo, Yu Chen, Lizhi Zhao, Ping Sun, Hongli Li, Lei Zhou, Xiayan Wang, Qiaosheng Pu
RÉSUMÉ

Plastic microchips have been broadly used as disposable microfluidic devices, but the poorly defined surface properties limit their application. Herein, we proved that an anionic polymer could be used as the background electrolyte (BGE) to provide a strong and stable cathodic electroosmotic flow (EOF) and modulate the electrophoretic behavior for efficient separation in relative thicker microchannels (∼75μm id). A cathodic EOF of ∼3.3×10-4cm2V-1s-1 was maintained using sodium polystyrene sulfonate (PSSNa) with a molecular weight of 5×105 as the BGE, which ensured fluorescein isothiocyanate labeled biogenic amines (BAs) appeared ahead of other components in the electropherograms obtained with microchips of cyclic olefin copolymer. Four selected BAs appeared within 50s and theoretical plate numbers of 8.0×105/m were achieved. The role of PSSNa was evaluated with streaming potential, dynamic light scattering, contact angle and atomic force microscopy. Its functionalities as surface modifier, viscosity regulator and pseudostationary phase were also confirmed. The proposed electrophoretic method was applied in the fast determination of BAs in fish meat samples.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Tryptamine hydrochloride, 99%