Accéder au contenu
Merck

Chidamide Inhibits Aerobic Metabolism to Induce Pancreatic Cancer Cell Growth Arrest by Promoting Mcl-1 Degradation.

PloS one (2016-11-23)
Mu He, Zhixin Qiao, Yanbing Wang, Qiyuan Kuai, Changlan Li, Yu Wang, Xingwei Jiang, Xuanlin Wang, Weijing Li, Min He, Suping Ren, Qun Yu
RÉSUMÉ

Pancreatic cancer is a fatal malignancy worldwide and urgently requires valid therapies. Previous research showed that the HDAC inhibitor chidamide is a promising anti-cancer agent in pancreatic cancer cell lines. In this study, we elucidate a probable underlying anti-cancer mechanism of chidamide involving the degradation of Mcl-1. Mcl-1 is frequently upregulated in human cancers, which has been demonstrated to participate in oxidative phosphorylation, in addition to its anti-apoptotic actions as a Bcl-2 family member. The pancreatic cancer cell lines BxPC-3 and PANC-1 were treated with chidamide, resulting in Mcl-1 degradation accompanied by induction of Mcl-1 ubiquitination. Treatment with MG132, a proteasome inhibitor reduced Mcl-1 degradation stimulated by chidamide. Chidamide decreased O2 consumption and ATP production to inhibit aerobic metabolism in both pancreatic cancer cell lines and primary cells, similar to knockdown of Mcl-1, while overexpression of Mcl-1 in pancreatic cancer cells could restore the aerobic metabolism inhibited by chidamide. Furthermore, chidamide treatment or Mcl-1 knockdown significantly induced cell growth arrest in pancreatic cancer cell lines and primary cells, and Mcl-1 overexpression could reduce this cell growth inhibition. In conclusion, our results suggest that chidamide promotes Mcl-1 degradation through the ubiquitin-proteasome pathway, suppressing the maintenance of mitochondrial aerobic respiration by Mcl-1, and resulting in inhibition of pancreatic cancer cell proliferation. Our work supports the claim that chidamide has therapeutic potential for pancreatic cancer treatment.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting human MCL1