Accéder au contenu
Merck

The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells.

Nature communications (2016-09-27)
Hye-Jin Boo, Hye-Young Min, Hyun-Ji Jang, Hye Jeong Yun, John Kendal Smith, Quanri Jin, Hyo-Jong Lee, Diane Liu, Hee-Seok Kweon, Carmen Behrens, J Jack Lee, Ignacio I Wistuba, Euni Lee, Waun Ki Hong, Ho-Young Lee
RÉSUMÉ

Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-α-tubuline monoclonal antibody produced in mouse, ascites fluid, clone B-5-1-2
Sigma-Aldrich
Anti-IGF-II Antibody, clone S1F2, clone S1F2, Upstate®, from mouse
Sigma-Aldrich
MISSION® esiRNA, targeting human RAB27A