- Control of rotor function in light-driven molecular motors.
Control of rotor function in light-driven molecular motors.
A study is presented on the control of rotary motion of an appending rotor unit in a light-driven molecular motor. Two new light driven molecular motors were synthesized that contain aryl groups connected to the stereogenic centers. The aryl groups behave as bidirectional free rotors in three of the four isomers of the 360° rotation cycle, but rotation of the rotors is hindered in the fourth isomer. Kinetic studies of both motor and rotor functions of the two new compounds are given, using (1)H NMR, 2D-EXSY NMR, and UV-vis spectroscopy. In addition, we present the development of a new method for introducing a range of aryl substituents at the α-carbon of precursors for molecular motors. The present study shows how the molecular system can be photochemically switched between a state of free rotor rotation and a state of hindered rotation and reveals the dynamics of coupled rotary systems.