Accéder au contenu
Merck

OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis.

Nature (2014-08-28)
Fang Yuan, Huimin Yang, Yan Xue, Dongdong Kong, Rui Ye, Chijun Li, Jingyuan Zhang, Lynn Theprungsirikul, Tayler Shrift, Bryan Krichilsky, Douglas M Johnson, Gary B Swift, Yikun He, James N Siedow, Zhen-Ming Pei
RÉSUMÉ

Water is crucial to plant growth and development. Environmental water deficiency triggers an osmotic stress signalling cascade, which induces short-term cellular responses to reduce water loss and long-term responses to remodel the transcriptional network and physiological and developmental processes. Several signalling components that have been identified by extensive genetic screens for altered sensitivities to osmotic stress seem to function downstream of the perception of osmotic stress. It is known that hyperosmolality and various other stimuli trigger increases in cytosolic free calcium concentration ([Ca(2+)]i). Considering that in bacteria and animals osmosensing Ca(2+) channels serve as osmosensors, hyperosmolality-induced [Ca(2+)]i increases have been widely speculated to be involved in osmosensing in plants. However, the molecular nature of corresponding Ca(2+) channels remain unclear. Here we describe a hyperosmolality-gated calcium-permeable channel and its function in osmosensing in plants. Using calcium-imaging-based unbiased forward genetic screens we isolated Arabidopsis mutants that exhibit low hyperosmolality-induced [Ca(2+)]i increases. These mutants were rescreened for their cellular, physiological and developmental responses to osmotic stress, and those with clear combined phenotypes were selected for further physical mapping. One of the mutants, reduced hyperosmolality-induced [Ca(2+)]i increase 1 (osca1), displays impaired osmotic Ca(2+) signalling in guard cells and root cells, and attenuated water transpiration regulation and root growth in response to osmotic stress. OSCA1 is identified as a previously unknown plasma membrane protein and forms hyperosmolality-gated calcium-permeable channels, revealing that OSCA1 may be an osmosensor. OSCA1 represents a channel responsible for [Ca(2+)]i increases induced by a stimulus in plants, opening up new avenues for studying Ca(2+) machineries for other stimuli and providing potential molecular genetic targets for engineering drought-resistant crops.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Eau, suitable for HPLC
Sigma-Aldrich
Eau, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Eau, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Eau, Deionized
Sigma-Aldrich
Eau, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Eau, for molecular biology, sterile filtered
Supelco
Eau, suitable for ion chromatography
Sigma-Aldrich
Eau, BioPerformance Certified
Sigma-Aldrich
Calcium, granular, 99%
Sigma-Aldrich
Eau, ACS reagent
Supelco
Eau, ACS reagent, for ultratrace analysis
Supelco
Eau, for TOC analysis
Sigma-Aldrich
Eau, for cell biology, sterile ultrafiltered
Eau, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Sigma-Aldrich
Eau, PCR Reagent
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Calcium, dendritic pieces, purified by distillation, 99.99% trace metals basis
Sigma-Aldrich
Water-16O, ≥99.94 atom % 16O
Sigma-Aldrich
Calcium, turnings, 99% trace metals basis
Sigma-Aldrich
Eau, endotoxin, free
Supelco
Eau, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
Calcium, pieces, <1 cm, 99%
Sigma-Aldrich
Eau, tested according to Ph. Eur.
Sigma-Aldrich
Calcium, dendritic pieces, purified by distillation, 99.9% trace metals basis
Eau, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Supelco
Eau, H&D Fitzgerald Ltd. Quality