Accéder au contenu
Merck

gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3.

Molecular and cellular biology (1997-10-29)
C D Wolfgang, B P Chen, J L Martindale, N J Holbrook, T Hai
RÉSUMÉ

Recently, we demonstrated that the function of ATF3, a stress-inducible transcriptional repressor, is negatively regulated by a bZip protein, gadd153/Chop10. In this report, we present evidence that ATF3 can repress the expression of its own inhibitor, gadd153/Chop10. First, ATF3 represses a chloramphenicol acetyltransferase reporter gene driven by the gadd153/Chop10 promoter when assayed by a transfection assay in vivo and a transcription assay in vitro. Second, the gadd153/Chop10 promoter contains two functionally important binding sites for ATF3: an AP-1 site and a C/EBP-ATF composite site, a previously unidentified binding site for ATF3. The absence of either site reduces the ability of ATF3 to repress the promoter. Third, overexpression of ATF3 by transient transfection results in a reduction of the endogenous gadd153/Chop10 mRNA level. Fourth, as described previously, ATF3 is induced in the liver upon CCl4 treatment. Intriguingly, we show in this report that gadd153/Chop10 mRNA is not present in areas where ATF3 is induced. Taken together, these results strongly suggest that ATF3 represses the expression of gadd153/Chop10. The mutual negative regulation between ATF3 and gadd153/Chop10 is discussed.