Accéder au contenu
Merck

Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress.

Biochimie (2006-10-19)
C Angeloni, J P E Spencer, E Leoncini, P L Biagi, S Hrelia
RÉSUMÉ

The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H(2)O(2)-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H(2)O(2) cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H(2)O(2) cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
3-O-Methylquercetin, ≥97% (HPLC)