Accéder au contenu
Merck

Oral contraceptives as substrates and inhibitors for human cytosolic SULTs.

Journal of biochemistry (2005-04-06)
Shin Yasuda, Masahito Suiko, Ming-Cheh Liu
RÉSUMÉ

Cytosolic sulfotransferases (SULTs) in mammals are involved in the biotransformation and homeostasis of various endogenous and xenobiotic compounds. The current study aimed to examine the sulfation of contraceptive compounds by various human cytosolic SULTs and to investigate the inhibitory effects and mode of action of these compounds on the sulfation of 17beta-estradiol, a major endogenous estrogen. A systematic study using all eleven known human cytosolic SULTs revealed the differential substrate specificity of these enzymes for the eight representative contraceptive compounds and two endogenous estrogens (estrone and 17beta-estradiol) tested as substrates. Activity data showed that SULT1A1 displayed the strongest activity toward 17alpha-ethynylestradiol. Kinetic studies revealed that the V (max) value of the sulfation of 17alpha-ethynylestradiol by SULT1A1 was 1.64 times that of the sulfation of 17beta-estradiol, while the K (m) values were almost equal for the two compounds. The inhibitory effects of three contraceptive compounds on the sulfation of 17beta-estradiol by SULT1A1 were examined. IC(50) values determined were 0.193, 1.84, and 2.98 mM, respectively, for 19-norethindrone acetate, ethynodiol diacetate and mifepristone. Kinetic analyses indicated that the mechanism underlying the inhibition by these contraceptives is of a mixed noncompetitive type. Metabolic labeling experiments confirmed the sulfation of contraceptive compounds and the release of their sulfated derivatives by HepG2 human hepatoma cells. Collectively, the results obtained suggest a role of sulfation in the metabolism of contraceptive compounds in vivo. Moreover, in view of their inhibitory effects on the sulfation of 17beta-estradiol, these compounds may potentially act to disrupt the homeostasis of endogenous estrogens.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ethynodiol diacetate