Accéder au contenu
Merck
  • Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions.

Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions.

The journal of physical chemistry. A (2012-06-07)
Pedro L Zamora, Frederick A Villamena
RÉSUMÉ

Radical forms of sulfur dioxide (SO(2)), sulfite (SO(3)(2-)), sulfate (SO(4)(2-)), and their conjugate acids are known to be generated in vivo through various chemical and biochemical pathways. Oxides of sulfur are environmentally pervasive compounds and are associated with a number of health problems. There is growing evidence that their toxicity may be mediated by their radical forms. Electron paramagnetic resonance (EPR) spin trapping using the commonly used spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), has been employed in the detection of SO(3)(•-) and SO(4)(•-). The thermochemistries of SO(2)(•-), SO(3)(•-), SO(4)(•-), and their respective conjugate acids addition to DMPO were predicted using density functional theory (DFT) at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level. No spin adduct was observed for SO(2)(•-) by EPR, but an S-centered adduct was observed for SO(3)(•-)and an O-centered adduct for SO(4)(•-). Determination of adducts as S- or O-centered was made via comparison based on qualitative trends of experimental hfcc's with theoretical values. The thermodynamics of the nonradical addition of SO(3)(2-) and HSO(3)(-) to DMPO followed by conversion to the corresponding radical adduct via the Forrester-Hepburn mechanism was also calculated. Adduct acidities and decomposition pathways were investigated as well, including an EPR experiment using H(2)(17)O to determine the site of hydrolysis of O-centered adducts. The mode of radical addition to DMPO is predicted to be governed by several factors, including spin population density, and geometries stabilized by hydrogen bonds. The thermodynamic data supports evidence for the radical addition pathway over the nucleophilic addition mechanism.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Supelco
5,5-Dimethyl-1-pyrroline N-oxide, for ESR-spectroscopy