Accéder au contenu
Merck

Assessment of DNA interstrand crosslinks using the modified alkaline comet assay.

Methods in molecular biology (Clifton, N.J.) (2011-12-08)
Jian Hong Wu, Nigel J Jones
RÉSUMÉ

The single cell gel electrophoresis (SCGE) assay, more commonly known as the comet assay, due to the "comet-like" appearance of the cells, was originally developed as a technique to measure the presence of DNA single-strand breaks. The assay is performed on single cells embedded in agar and placed in an electrical field at alkaline pH, so that fragments of negatively charged single-stranded DNA move through the gel toward the positively charged anode. Undamaged DNA moves relatively slowly, forming the head of the comet, while DNA fragmented due to the presence of single-strand breaks, moves more quickly giving the appearance of the tail. The extent of DNA migration is a measure of the DNA damage present. Since it was first developed, the comet assay has been adapted for measuring other types of DNA damage. The neutral comet assay has been employed for DNA double-strand breaks, while techniques using DNA repair enzymes to cleave specific adducts, UvrABC for ultraviolet radiation induced adducts, for example, have also been described. Here, we describe a modified version of the comet assay for the measurement of interstrand crosslinks (ICLs). Interstrand crosslinking agents include the chemotherapeutic agents mitomycin C and cis-platin, psoralen plus UVA light (PUVA) used to treat hyperproliferative skin disorders and diepoxybutane, a metabolite of 1,3-butadiene used in industrial processes and an environmental pollutant. ICLs are a potent and cytotoxic form of DNA damage as they prevent DNA strand separation, thereby preventing DNA replication. Their removal requires several different DNA repair processes including translesion synthesis and homologous recombination. As ICLs prevent separation of the DNA strands, their presence results in less DNA migration in the comet assay. To successfully measure ICLs, it is necessary to incorporate a step that induces single-strand breaks (using a defined dose of ionizing radiation) that allows the crosslinked DNA to migrate.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
1,3-Butadiene diepoxide, 97%