Accéder au contenu
Merck

Development of human cartilage circadian rhythm in a stem cell-chondrogenesis model.

Theranostics (2022-06-07)
Mark A Naven, Leo A H Zeef, Shiyang Li, Paul A Humphreys, Christopher A Smith, Dharshika Pathiranage, Stuart Cain, Steven Woods, Nicola Bates, Manting Au, Chunyi Wen, Susan J Kimber, Qing-Jun Meng
RÉSUMÉ

The circadian clock in murine articular cartilage is a critical temporal regulatory mechanism for tissue homeostasis and osteoarthritis. However, translation of these findings into humans has been hampered by the difficulty in obtaining circadian time series human cartilage tissues. As such, a suitable model is needed to understand the initiation and regulation of circadian rhythms in human cartilage. Methods: We used a chondrogenic differentiation protocol on human embryonic stem cells (hESCs) as a proxy for early human chondrocyte development. Chondrogenesis was validated using histology and expression of pluripotency and differentiation markers. The molecular circadian clock was tracked in real time by lentiviral transduction of human clock gene luciferase reporters. Differentiation-coupled gene expression was assessed by RNAseq and differential expression analysis. Results: hESCs lacked functional circadian rhythms in clock gene expression. During chondrogenic differentiation, there was an expected reduction of pluripotency markers (e.g., NANOG and OCT4) and a significant increase of chondrogenic genes (SOX9, COL2A1 and ACAN). Histology of the 3D cartilage pellets at day 21 showed a matrix architecture resembling human cartilage, with readily detectable core clock proteins (BMAL1, CLOCK and PER2). Importantly, the circadian clocks in differentiating hESCs were activated between day 11 (end of the 2D stage) and day 21 (10 days after 3D differentiation) in the chondrogenic differentiation protocol. RNA sequencing revealed striking differentiation coupled changes in the expression levels of most clock genes and a range of clock regulators. Conclusions: The circadian clock is gradually activated through a differentiation-coupled mechanism in a human chondrogenesis model. These findings provide a human 3D chondrogenic model to investigate the role of the circadian clock during normal homeostasis and in diseases such as osteoarthritis.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-PER2 Antibody, serum, Chemicon®
Sigma-Aldrich
Anti-BMAL1 Antibody, serum, from guinea pig
Sigma-Aldrich
Anti-CLOCK Antibody, serum, Chemicon®