Accéder au contenu
Merck

Large-scale voltage imaging in behaving mice using targeted illumination.

iScience (2021-11-12)
Sheng Xiao, Eric Lowet, Howard J Gritton, Pierre Fabris, Yangyang Wang, Jack Sherman, Rebecca A Mount, Hua-An Tseng, Heng-Ye Man, Christoph Straub, Kiryl D Piatkevich, Edward S Boyden, Jerome Mertz, Xue Han
RÉSUMÉ

Recent improvements in genetically encoded voltage indicators enabled optical imaging of action potentials and subthreshold transmembrane voltage in vivo. To perform high-speed voltage imaging of many neurons simultaneously over a large anatomical area, widefield microscopy remains an essential tool. However, the lack of optical sectioning makes widefield microscopy prone to background cross-contamination. We implemented a digital-micromirror-device-based targeted illumination strategy to restrict illumination to the cells of interest and quantified the resulting improvement both theoretically and experimentally with SomArchon expressing neurons. We found that targeted illumination increased SomArchon signal contrast, decreased photobleaching, and reduced background cross-contamination. With the use of a high-speed, large-area sCMOS camera, we routinely imaged tens of spiking neurons simultaneously over minutes in behaving mice. Thus, the targeted illumination strategy described here offers a simple solution for widefield voltage imaging of many neurons over a large field of view in behaving animals.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Poly-L-lysine hydrobromide, mol wt 30,000-70,000
Sigma-Aldrich
L-Cystéine hydrochloride, anhydrous, ≥98% (TLC)
Sigma-Aldrich
5-Fluoro-2′-deoxyuridine, Experimental anticancer agent shown to have activity against a variety of malignant neoplasms, including mouse mammary tumors and colorectal carcinomas.