Accéder au contenu
Merck

Selective Blockade of TNFR1 Improves Clinical Disease and Bronchoconstriction in Experimental RSV Infection.

Viruses (2020-10-22)
Dorothea R Morris, Maria Ansar, Teodora Ivanciuc, Yue Qu, Antonella Casola, Roberto P Garofalo
RÉSUMÉ

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infants and young children. Although some clinical studies have speculated that tumor necrosis factor (TNF)-α is a major contributor of RSV-mediated airway disease, experimental evidence remains unclear or conflicting. TNF-α initiates inflammation and cell death through two distinct receptors: TNF-receptor (TNFR)1 and TNFR2. Here we delineate the function of TNF-α by short-lasting blockade of either receptor in an experimental BALB/c mouse model of RSV infection. We demonstrate that antibody-mediated blockade of TNFR1, but not TNFR2, results in significantly improved clinical disease and bronchoconstriction as well as significant reductions of several inflammatory cytokines and chemokines, including IL-1α, IL-1β, IL-6, Ccl3, Ccl4, and Ccl5. Additionally, TNFR1 blockade was found to significantly reduce neutrophil number and activation status, consistent with the concomitant reduction of pro-neutrophilic chemokines Cxcl1 and Cxcl2. Similar protective activity was also observed when a single-dose of TNFR1 blockade was administered to mice following RSV inoculation, although this treatment resulted in improved alveolar macrophage survival rather than reduced neutrophil activation. Importantly, short-lasting blockade of TNFR1 did not affect RSV peak replication in the lung. This study suggests a potential therapeutic approach for RSV bronchiolitis based on selective blockade of TNFR1.