Accéder au contenu
Merck

Extracellular release of ATP promotes systemic inflammation during acute pancreatitis.

American journal of physiology. Gastrointestinal and liver physiology (2019-08-23)
Ajay Dixit, Hassam Cheema, John George, Srikanth Iyer, Vikas Dudeja, Rajinder Dawra, Ashok K Saluja
RÉSUMÉ

In the current study, we explored the role of extracellular ATP (eATP) in promoting systemic inflammation during development of acute pancreatitis (AP). Release of extracellular (e)ATP was evaluated in plasma and bronchoalveolar lavage fluid (BALF) of mice with experimental acute pancreatitis (AP). Prophylactic intervention using apyrase or suramin was used to understand the role and contribution of eATP in pancreatitis-associated systemic injury. AP of varying severity was induced in C57BL/6 mice using 1-day or 2-day caerulein, caerulein + LPS and l-arginine models. eATP was measured in plasma and BALF. Mice were treated with suramin or apyrase in the caerulein and l-arginine models of AP. Plasma cytokines, lung, and pancreatic myeloperoxidase, and morphometric analysis of pancreatic and lung histology, were used to assess the severity of pancreatitis. Plasma eATP and purinergic 2 (P2) receptors in the pancreas and lungs were significantly elevated in the experimental models of AP. Blocking the effect of eATP by suramin led to reduced levels of plasma IL-6 and TNFα as well as reduced lung, and pancreatic injury. Neutralizing eATP with apyrase reduced systemic injury but did not ameliorate local injury. The results of this study support the role of eATP and P2 receptors in promoting systemic inflammation during AP. Modulating purinergic signaling during AP can be an important therapeutic strategy in controlling systemic inflammation and, thus, systemic inflammatory response syndrome during AP.NEW & NOTEWORTHY Released ATP from injured cells promotes systemic inflammation in acute pancreatitis.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-GAPDH Antibody, from chicken, purified by affinity chromatography