Accéder au contenu
Merck

The role of Neu1 in the protective effect of dipsacoside B on acetaminophen-induced liver injury.

Annals of translational medicine (2020-08-15)
Shuang Chen, Mengzhen Li, Wei Jiang, Hao Zheng, Lian-Wen Qi, Shujun Jiang
RÉSUMÉ

Pharmacological induction of autophagy can protect against acetaminophen (APAP) induced acute liver failure (ALF) by removing APAP adducts (APAP-AD), but its mechanism is not well understood. Hepatoprotective effect of saponins from traditional Chinese medicine has attracted widespread attention from all over the world. The content of saponins in Lonicerae Flos (Shanyinhua in Chinese) is up to 15-25%. Dipsacoside B (DB) is a common bioactive ingredient of different Shanyinhua, but its hepatoprotective effect and mechanism are still unknown. The present investigation aimed to study the benefit of DB in APAP-induced hepatotoxicity mouse model and different cell model. Mice were treated with DB by intraperitoneal injection 1 h before treated with 500 mg/kg APAP, which caused ALF after 4 h. HepG2 cells were treated with DB for 1 h before treated with 10 mM APAP for 12 h. Hepatotoxicity was assessed via ALT and AST. Neuraminidase 1 (Neu1), lysosomal autophagy marker LC3 and P62 were examined by western blot. Neu1 activity was assayed using its substrate 2-(4-methylumbelliferyl)-D-N-acetylneuraminic acid. Apoptosis level was examined by TUNEL and caspase 3 activity. Molecular docking was used to predict the interaction between DB and protein Neu1. Our results demonstrated that pretreatment with 0.5 μM DB (in vitro) and 50 mg/kg DB (in vivo) respectively reversed increased level of AST and ALT induced by APAP. Histopathological examinations showed reduced necrosis and apoptosis in the liver of DB-treated APAP mice. DB promoted the removal of APAP-AD by lysosomal autophagy. These effects were associated with significant decrease in the level of Neuraminidase 1 (Neu1), a negative regulator of lysosomal exocytosis. Molecular docking results showed that DB could bind to Neu1 protein (binding energy =-7.86 kcal/mol). Akt/mTOR-mediated autophagy and inhibition of apoptosis may be the main mechanisms for the hepatoprotective effects of DB in acetaminophen-induced liver injury. These data indicate that DB alleviated hepatotoxicity caused by APAP at least in part via Neu1 inhibition, Akt/mTOR pathway is involved in the detoxification effect of DB on acetaminophen-induced hepatotoxicity.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
2′-(4-Methylumbelliferyl)-α-D-N-acetylneuraminic acid sodium salt hydrate, ≥95% (HPLC)