Accéder au contenu
Merck

Interferon Gamma Inhibits Varicella-Zoster Virus Replication in a Cell Line-Dependent Manner.

Journal of virology (2019-03-29)
Akhalesh K Shakya, Dennis J O'Callaghan, Seong K Kim
RÉSUMÉ

The major immediate early 62 (IE62) protein of varicella-zoster virus (VZV) is delivered to newly infected cell nuclei, where it initiates VZV replication by transactivating viral immediate early (IE), early (E), and late (L) genes. Interferon gamma (IFN-γ) is a potent cytokine produced following primary VZV infection. Furthermore, VZV reactivation correlates with a decline in IFN-γ-producing immune cells. Our results showed that treatment with 20 ng/ml of IFN-γ completely reduced intracellular VZV yield in A549 lung epithelial cells, MRC-5 lung fibroblasts, and ARPE-19 retinal epithelial cells at 4 days post-VZV infection. However, IFN-γ reduced virus yield only 2-fold in MeWo melanoma cells compared to that of untreated cells. IFN-β significantly inhibited VZV replication in both ARPE-19 and MeWo cells. In luciferase assays with VZV open reading frame 61 (ORF61) promoter reporter plasmid, IFN-γ abrogated the transactivation activity of IE62 by 95%, 97%, and 89% in A549, ARPE-19, and MRC-5 cells, respectively. However, IFN-γ abrogated IE62's transactivation activity by 16% in MeWo cells, indicating that IFN-γ inhibits VZV replication as well as IE62-mediated transactivation in a cell line-dependent manner. The expression of VZV IE62 and ORF63 suppressed by IFN-γ was restored by JAK1 inhibitor treatment, indicating that the inhibition of VZV replication is mediated by JAK/STAT1 signaling. In the presence of IFN-γ, knockdown of interferon response factor 1 (IRF1) increased VZV replication. Ectopic expression of IRF1 reduced VZV yields 4,000-fold in MRC-5 and ARPE-19 cells but 3-fold in MeWo cells. These results suggest that IFN-γ blocks VZV replication by inhibiting IE62 function in a cell line-dependent manner.IMPORTANCE Our results showed that IFN-γ significantly inhibited VZV replication in a cell line-dependent manner. IFN-γ inhibited VZV gene expression after the immediate early stage of infection and abrogated IE62-mediated transactivation. These results suggest that IFN-γ blocks VZV replication by inhibiting IE62 function in a cell line-dependent manner. Understanding the mechanisms by which IFN-γ plays a role in VZV gene programming may be important in determining the tissue restriction of VZV.