Accéder au contenu
Merck
  • Lysophosphatidic acid guides the homing of transplanted olfactory ensheathing cells to the lesion site after spinal cord injury in rats.

Lysophosphatidic acid guides the homing of transplanted olfactory ensheathing cells to the lesion site after spinal cord injury in rats.

Experimental cell research (2019-03-23)
Wentao Zhong, Kaipeng Bian, Ya'nan Hu, Zhongqing Ji, Xiaojing Xu, Jian Li, Peng Wu, Xinhong Wang, Yu Zhang, Peng Zhang, Huanxiang Zhang, Yixin Shen
RÉSUMÉ

Olfactory ensheathing cells (OECs) are ideal candidates for cell-based therapies aimed at repairing spinal cord injury (SCI). Accurate targeting of OECs to the lesion site is critical to reconstructing the impaired nervous system. However, the key factors guiding the homing of transplanted OECs to the damaged area after SCI are still unclear. Here, we demonstrate that lysophosphatidic acid (LPA) can significantly facilitate the homing of OECs after SCI in rats. First, we found that OECs exhibited a robust chemotaxis response to LPA in vitro, with LPAR1 being predominant receptor expressed on OECs. We further found that β-catenin signaling plays an important role in LPA-induced OEC migration. Moreover, silencing LPAR1 not only abolished the migration of OECs but also prevented ERK1/2 phosphorylation and β-catenin activation, suggesting that LPAR1 ligation serves to activate the ERK1/2 and β-catenin pathways in LPA-induced OEC chemotactic migration. Finally, cell transplantation experiments confirmed that endogenous LPA, which was observed to be produced at the lesion site after SCI in rat, is a key chemokine that facilitates OEC migration to the injury center. Collectively, our data provide a further description of the homing effects of LPA and a mechanism by which transplanted OECs migrate to the injured area after SCI in rats.