Accéder au contenu
Merck

The co-activator p300 associates physically with and can mediate the action of the distal enhancer of the FGF-4 gene.

The Journal of biological chemistry (2002-12-19)
Tamara Nowling, Cory Bernadt, Lance Johnson, Michelle Desler, Angie Rizzino
RÉSUMÉ

Distal enhancers commonly regulate gene expression. However, the mechanisms of transcriptional mediation by distal enhancers remain largely unknown. To better understand distal enhancer-mediated transcription, we examined the regulation of the FGF-4 gene. The FGF-4 gene is regulated during early development by a powerful distal enhancer located downstream of the promoter in exon 3. Sox-2 and Oct-3 bind to the enhancer and are required for the activation of the FGF-4 gene. Previously, we implicated the co-activator p300 as a mediator of Sox-2/Oct-3 synergistic activation of a heterologous promoter, suggesting that p300 may play a role in mediating enhancer activation of the FGF-4 gene. In this study, we provide both functional and physical evidence that p300 plays an important role in the action of the FGF-4 enhancer. Specifically, we show that E1a, but not a mutant form of E1a that is unable to bind p300, inhibits enhancer activation of the FGF-4 promoter. We also demonstrate that Gal4/p300 fusion proteins can stimulate the FGF-4 promoter when bound to the FGF-4 enhancer. Additionally, we present evidence that p300 mediation of the FGF-4 enhancer requires acetyltransferase activity. Importantly, we also show that Sox-2 and p300 are physically associated with the endogenous FGF-4 enhancer but weakly associated with the endogenous FGF-4 promoter. These results are consistent with a model of transitory interaction between the distal enhancer and the FGF-4 promoter. Our results also suggest that intragenic distal enhancers may use mechanisms that differ from extragenic distal enhancers.