- Characterizing high-affinity antigen/antibody complexes by kinetic- and equilibrium-based methods.
Characterizing high-affinity antigen/antibody complexes by kinetic- and equilibrium-based methods.
Two biophysical methods, Biacore and KinExA, were used to kinetically and thermodynamically characterize high-affinity antigen/antibody complexes. Three to five independent experiments were performed on each platform with three different antigen/antibody complexes possessing nanomolar to picomolar equilibrium dissociation constants. By monitoring the dissociation phase on Biacore for 4 h, we were able to measure dissociation rate constants (kd) on the order of 1 x 10(-5)s(-1). To characterize high-affinity interactions by KinExA, samples needed to be equilibrated for up to 35 h to reach equilibrium. In the end, we show that similar kinetic rate constants and affinities were determined with both solution-phase and solid-phase methodologies. These results help further validate both interaction technologies and illustrate their suitability for characterizing extremely high-affinity interactions.