Skip to Content
Merck
  • The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

Journal of the American Society for Mass Spectrometry (2014-09-25)
Tiina J Kauppila, Hendrik Kersten, Thorsten Benter
ABSTRACT

A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

MATERIALS
Product Number
Brand
Product Description

Supelco
Anthracene, analytical standard
Sigma-Aldrich
Anthracene, sublimed grade, ≥99%
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Anthracene, reagent grade, 97%
Sigma-Aldrich
Chlorobenzene, anhydrous, 99.8%
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Anthracene, ReagentPlus®, 99%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Supelco
Anthracene, analytical standard
Sigma-Aldrich
Bromobenzene, ReagentPlus®, 99%
Supelco
Chlorobenzene, analytical standard
Sigma-Aldrich
Anthracene, suitable for scintillation, ≥99.0% (GC)
Supelco
Acetone, analytical standard
Supelco
Anthracene, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Bromobenzene, ≥99.5% (GC)
Sigma-Aldrich
Chlorobenzene, ACS reagent, ≥99.5%
Sigma-Aldrich
Chlorobenzene, suitable for HPLC, 99.9%
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Pyridine, ≥99%
Sigma-Aldrich
Anisole, ≥99%, FCC, FG
Sigma-Aldrich
Ethylbenzene, anhydrous, 99.8%
Sigma-Aldrich
Quinoline, reagent grade, 98%
Sigma-Aldrich
Hexane, anhydrous, 95%
Supelco
Anisole, analytical standard
Sigma-Aldrich
Anisole, anhydrous, 99.7%