Skip to Content
Merck
  • Developmental defects of coronary vasculature in rat embryos administered bis-diamine.

Developmental defects of coronary vasculature in rat embryos administered bis-diamine.

Birth defects research. Part B, Developmental and reproductive toxicology (2011-02-12)
Takashi Hanato, Masao Nakagawa, Nobuhiko Okamoto, Setsuko Nishijima, Hidetoshi Fujino, Morimi Shimada, Yoshihiro Takeuchi, Kyoko Imanaka-Yoshida
ABSTRACT

Conotruncal anomalies are often associated with abnormal coronary arteries. Although bis-diamine is known to induce conotruncal defects, its pathological effects on coronary vascular development have not been demonstrated. This study sought to assess the teratogenic effects of bis-diamine on coronary vascular development and the pathogenesis of this anomalous association. A single 200 mg dose of bis-diamine was administered to pregnant Wistar rats at 10.5 days of gestation. Fifty-two embryos from 10 mother rats underwent morphological analysis of the coronary arteries. Three embryos each were removed from four mothers on embryonic days (ED) 14.5, 15.5, 16.5, and 17.5 and used for immunohistochemical studies using the anti-vascular cell adhesion molecule (VCAM)-1 antibody. Conotruncal anomalies were detected in 48 of 52 embryos, and an aplastic or hypoplastic left coronary artery was found in all of them. In control embryos at ED 16.5, VCAM-1-positive epicardial cells were transformed into mesenchymal cells in vascular plexus, which appeared to differentiate into the endothelial cells of coronary vasculature. In the heart at ED 17.5, coronary vasculature was well developed and connected with coronary ostia near the aorta. However, poor epicardial-mesenchymal transformation and subsequent differentiation was revealed in bis-diamine-treated embryos at EDs 16.5 and 17.5, causing abnormal development of the coronary vasculature and incomplete connections with coronary ostia of the aorta. Anomalous coronary arteries in the bis-diamine-treated embryos are induced by the disruption of epicardial-mesenchymal transformation and subsequent poor development of coronary vasculature. Incomplete hatching of the coronary ostium is associated with abnormal truncal division.