- An orthologue of Bacteroides fragilis NanH is the principal sialidase in Tannerella forsythia.
An orthologue of Bacteroides fragilis NanH is the principal sialidase in Tannerella forsythia.
Sialidase activity is a putative virulence factor of the anaerobic periodontal pathogen Tannerella forsythia, but it is uncertain which genes encode this activity. Characterization of a putative sialidase, SiaHI, by others, indicated that this protein alone may not be responsible for all of the sialidase activity. We describe a second sialidase in T. forsythia (TF0035), an orthologue of Bacteroides fragilis NanH, and its expression in Escherichia coli. Sialidase activity of the expressed NanH was confirmed by using 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid as a substrate. Biochemical characterization of the recombinant T. forsythia NanH indicated that it was active over a broad pH range, with optimum activity at pH 5.5. This enzyme has high affinity for 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (K(m) of 32.9 +/- 10.3 microM) and rapidly releases 4-methylumbelliferone (V(max) of 170.8 +/- 11.8 nmol of 4-methylumbelliferone min(-1) mg of protein(-1)). E. coli lysates containing recombinant T. forsythia NanH cleave sialic acid from a range of substrates, with a preference for alpha2-3 glycosidic linkages. The genes adjacent to nanH encode proteins apparently involved in the metabolism of sialic acid, indicating that the NanH sialidase is likely to be involved in nutrient acquisition.