Skip to Content
Merck
  • Keratin 14-dependent disulfides regulate epidermal homeostasis and barrier function via 14-3-3σ and YAP1.

Keratin 14-dependent disulfides regulate epidermal homeostasis and barrier function via 14-3-3σ and YAP1.

eLife (2020-05-06)
Yajuan Guo, Catherine J Redmond, Krystynne A Leacock, Margarita V Brovkina, Suyun Ji, Vinod Jaskula-Ranga, Pierre A Coulombe
ABSTRACT

The intermediate filament protein keratin 14 (K14) provides vital structural support in basal keratinocytes of epidermis. Recent studies evidenced a role for K14-dependent disulfide bonding in the organization and dynamics of keratin IFs in skin keratinocytes. Here we report that knock-in mice harboring a cysteine-to-alanine substitution at Krt14's codon 373 (C373A) exhibit alterations in disulfide-bonded K14 species and a barrier defect secondary to enhanced proliferation, faster transit time and altered differentiation in epidermis. A proteomics screen identified 14-3-3 as K14 interacting proteins. Follow-up studies showed that YAP1, a transcriptional effector of Hippo signaling regulated by 14-3-3sigma in skin keratinocytes, shows aberrant subcellular partitioning and function in differentiating Krt14 C373A keratinocytes. Residue C373 in K14, which is conserved in a subset of keratins, is revealed as a novel regulator of keratin organization and YAP function in early differentiating keratinocytes, with an impact on cell mechanics, homeostasis and barrier function in epidermis.

MATERIALS
Product Number
Brand
Product Description

Roche
TUNEL Enzyme, from calf thymus recombinant in E. coli
Roche
TUNEL Label Mix, sufficient for 30 tests, pkg of 3 × 550 μL
Millipore
FluorSave Reagent