- Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice.
Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice.
Hydrogen sulfide gas (H2S) has protective effects in the cardiovascular system that includes preventing the development of atherosclerosis when tested in several in vivo models. Plaque instability is a major risk factor for thromboembolism, myocardial infarction, and stroke, so we examined if H2S can promote plaque stability and the potential underlying mechanisms. Apolipoprotein E knockout mice fed an atherogenic diet were administered the exogenous H2S donor sodium hydrosulfide (NaHS) or pravastatin as a positive control daily for 14 weeks. NaHS significantly enhanced plaque stability by increasing fibrous cap thickness and collagen content compared to vehicle-treated controls. NaHS treatment also reduced blood lipid levels and plaque formation. Preservation of plaque stability by NaHS was associated with reductions in vascular smooth muscle cells (VSMCs) apoptosis and expression of the collagen-degrading enzyme matrix metallopeptidase-9 (MMP-9) in plaque. While pravastatin also increased fibrous cap thickness and reduced VSMC apoptosis, but did not enhance plaque collagen or reduce MMP-9 significantly, suggesting distinct mechanisms of plaque stabilization. in vitro, NaHS also decreased MMP-9 expression in macrophages stimulated with tumor necrosis factor-α by inhibiting ERK/JNK phosphorylation and activator protein 1 nuclear translocation. Moreover, H2S reduced caspase-3/9 activity, Bax/Bcl-2 ratio, and LOX-1 mRNA expression in VSMCs stimulated with oxidized low-density lipoprotein. These results suggest that H2S enhances plaque stability and protects against atherogenesis by increasing plaque collagen content and VSMC count. In conclusion, H2S exerts protective effects against atherogenesis at least partly by stabilizing atherosclerotic plaque.