Skip to Content
Merck
  • Odor compounds from different sources of landfill: characterization and source identification.

Odor compounds from different sources of landfill: characterization and source identification.

Waste management (New York, N.Y.) (2012-04-07)
Jing-Jing Fang, Na Yang, Dan-Yan Cen, Li-Ming Shao, Pin-Jing He
ABSTRACT

This study investigated the odor compounds from different areas in a landfill site, which included the municipal solid waste (MSW)-related area, the leachate-related area and the sludge-related area. Nine sampling points were placed and 35 types of odorous substances were measured and quantified from these grabbed samples. The results showed that the main odorous substances emitted from landfill site were styrene, toluene, xylene, acetone, methanol, n-butanone, n-butylaldehyde, acetic acid, dimethyl sulfide, dimethyl disulfide and ammonia. In the MSW-related area, the highest concentrations of oxygenated compounds were observed at the gas extraction wells (GW), while sulfur compounds were rare. Ammonia in the sludge-related area was very abundant. Sludge discharge area (SD1) and sludge disposal work place (SD2) were representative points of pre- and post-drying, in which the characterizations of the emitted odorous gas were different. After chemical drying, the concentration of ammonia increased, whereas those of volatile fatty acids and sulfur compounds decreased. In the leachate-related area, relatively low concentrations of all those odorants were detected in leachate storage pool (LS), which may be due to the enclosure operation of the leachate storage pool. Using principal components analysis and cluster analysis, GW, SD1 and SD2 were distinguished from the other sampling points. The typical odorants in GW were acetaldehyde, ethyl benzene, xylene, methylamine and dimethyl formamide. The typical odorants in SD1 were methyl mercaptan, valeric acid and isovaleric acid, while those in SD2 were carbon disulfide, acetone, 3-pentanone, methanol and trimethylamine. The typical odorants in other sampling points were hydrogen sulfide, n-butylaldehyde and acetic acid.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methylamine-13C hydrochloride, 99 atom % 13C
Sigma-Aldrich
Methylamine solution, 2.0 M in THF
Sigma-Aldrich
Methylamine solution, 2.0 M in methanol
Sigma-Aldrich
Methylamine solution, 33 wt. % in absolute ethanol ((denatured with 1% toluene))
Sigma-Aldrich
Methylamine solution, 40 wt. % in H2O
Sigma-Aldrich
Methylamine-15N hydrochloride, 98 atom % 15N
Sigma-Aldrich
Methylamine hydrochloride, ≥98%