Skip to Content
Merck
  • Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

Biomaterials (2015-10-17)
Myra Noemi Chávez, Thilo Ludwig Schenck, Ursula Hopfner, Carolina Centeno-Cerdas, Ian Somlai-Schweiger, Christian Schwarz, Hans-Günther Machens, Mathias Heikenwalder, María Rosa Bono, Miguel L Allende, Jörg Nickelsen, José Tomás Egaña
ABSTRACT

The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Calcein-AM, suitable for fluorescence, BioReagent, ≥95.0% (HPLC)
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Trypan Blue, ≥80% (HPLC), Dye content 60 %
Sigma-Aldrich
N-Phenylthiourea, ≥98%
Sigma-Aldrich
Paromomycin sulfate salt, powder, BioReagent, suitable for cell culture, potency: ≥675 μg per mg
Sigma-Aldrich
Paromomycin sulfate salt, ≥98% (TLC)
Sigma-Aldrich
Paromomycin sulfate salt, suitable for plant cell culture, BioReagent
Sigma-Aldrich
Trypan Blue, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
5-Propyl-2-thiouracil, ≥98%
Sigma-Aldrich
Calcein-AM, Small Package (20 X 50 μg ), ≥95.0% (HPLC)
Sigma-Aldrich
Ethyl 3-aminobenzoate methanesulfonate, 98%
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets