- First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib.
First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib.
The enzyme poly(ADP-ribose) glycohydrolase (PARG) performs a critical role in the repair of DNA single strand breaks (SSBs). However, a detailed understanding of its mechanism of action has been hampered by a lack of credible, cell-active chemical probes. Herein, we demonstrate inhibition of PARG with a small molecule, leading to poly(ADP-ribose) (PAR) chain persistence in intact cells. Moreover, we describe two advanced, and chemically distinct, cell-active tool compounds with convincing on-target pharmacology and selectivity. Using one of these tool compounds, we demonstrate pharmacology consistent with PARG inhibition. Further, while the roles of PARG and poly(ADP-ribose) polymerase (PARP) are closely intertwined, we demonstrate that the pharmacology of a PARG inhibitor differs from that observed with the more thoroughly studied PARP inhibitor olaparib. We believe that these tools will facilitate a wider understanding of this important component of DNA repair and may enable the development of novel therapeutic agents exploiting the critical dependence of tumors on the DNA damage response (DDR).