- Inhibition of GPR137 suppresses proliferation of medulloblastoma cells in vitro.
Inhibition of GPR137 suppresses proliferation of medulloblastoma cells in vitro.
Medulloblastoma is the most common malignant pediatric brain tumor in children. GPR137 is a ubiquitously expressed gene in the central nervous system. It has been reported that GPR137 modulates malignant proliferation of glioma cells. However, the relationship between GPR137 and medulloblastoma is still unknown. In this study, we knocked down GPR137 in the medulloblastoma cell line Daoy via a lentivirus-based RNA interference system to explore its role in medulloblastoma. Functional analyses showed that cell proliferation and colony formation were obviously restrained in Daoy cells after GPR137 knockdown. Furthermore, knockdown of GPR137 in Daoy cells led to a significant increase in cell percentage in the G0/G1 phase but a decrease in the S phase. Additionally, the cell population in the sub-G1 phase, which represents apoptotic cells, was remarkably increased in GPR137 knockdown cells. GPR137 inhibition induced a strong proapoptotic effect in Daoy cells, as confirmed by annexin V-APC/7-AAD double staining. In conclusion, GPR137 knockdown inhibited growth of Daoy medulloblastoma cells via disturbing cell cycle progression and inducing apoptosis. Our investigation suggested that GPR137 could be a potential oncogene in medulloblastoma cells and might serve as a target for the treatment of medulloblastoma.