Skip to Content
Merck
  • Hypercapnia Inhibits Autophagy and Bacterial Killing in Human Macrophages by Increasing Expression of Bcl-2 and Bcl-xL.

Hypercapnia Inhibits Autophagy and Bacterial Killing in Human Macrophages by Increasing Expression of Bcl-2 and Bcl-xL.

Journal of immunology (Baltimore, Md. : 1950) (2015-04-22)
S Marina Casalino-Matsuda, Aisha Nair, Greg J Beitel, Khalilah L Gates, Peter H S Sporn
ABSTRACT

Hypercapnia, the elevation of CO2 in blood and tissue, commonly develops in patients with advanced lung disease and severe pulmonary infections, and it is associated with high mortality. We previously reported that hypercapnia alters expression of host defense genes, inhibits phagocytosis, and increases the mortality of Pseudomonas pneumonia in mice. However, the effect of hypercapnia on autophagy, a conserved process by which cells sequester and degrade proteins and damaged organelles that also plays a key role in antimicrobial host defense and pathogen clearance, has not previously been examined. In the present study we show that hypercapnia inhibits autophagy induced by starvation, rapamycin, LPS, heat-killed bacteria, and live bacteria in the human macrophage. Inhibition of autophagy by elevated CO2 was not attributable to acidosis. Hypercapnia also reduced macrophage killing of Pseudomonas aeruginosa. Moreover, elevated CO2 induced the expression of Bcl-2 and Bcl-xL, antiapoptotic factors that negatively regulate autophagy by blocking Beclin 1, an essential component of the autophagy initiation complex. Furthermore, small interfering RNA targeting Bcl-2 and Bcl-xL and the small molecule Z36, which blocks Bcl-2 and Bcl-xL binding to Beclin 1, prevented hypercapnic inhibition of autophagy and bacterial killing. These results suggest that targeting the Bcl-2/Bcl-xL-Beclin 1 interaction may hold promise for ameliorating hypercapnia-induced immunosuppression and improving resistance to infection in patients with advanced lung disease and hypercapnia.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting mouse Bcl2l1
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, synthetic, ≥98.0% (TLC)
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
Sigma-Aldrich
PMA, for use in molecular biology applications, ≥99% (HPLC)
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
MISSION® esiRNA, targeting human BCL2L1
Sigma-Aldrich
Rapamycin, Ready Made Solution, 2.5 mg/mL in DMSO (2.74 mM), from Streptomyces hygroscopicus
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
DAPI, for nucleic acid staining
SAFC
L-Glutamine