Skip to Content
Merck
  • Controlled-release triple anti-inflammatory therapy based on novel gastroretentive sponges: characterization and magnetic resonance imaging in healthy volunteers.

Controlled-release triple anti-inflammatory therapy based on novel gastroretentive sponges: characterization and magnetic resonance imaging in healthy volunteers.

International journal of pharmaceutics (2014-06-15)
Mina Ibrahim Tadros, Rania Hassan Fahmy
ABSTRACT

The current work aimed to develop novel composite sponges of chitosan (CH)-chondroitin sulfate (CS) as a low-density gastroretentive delivery system for lornoxicam (LOR). This triple anti-inflammatory therapy-loaded matrices are expected to expand and float upon contact with gastric fluids for prolonged times. CH and CS solutions (3%, w/w) were prepared, mixed in different ratios, lyophilized, coated with magnesium stearate and compressed. The CH:CS interpolymer complex (IPC) was evaluated via FT-IR, DSC, and XRD. The compressed-sponges were evaluated for appearance, structure, porosity, pore diameter, density, wetting-time, floating characteristics, adhesion-retention, and LOR-release. The gastroretentivity of the best achieved magnetite-loaded sponges was monitored in healthy volunteers via MRI. The interaction between CH (protonated amino groups) and CS (anionic carboxylate/sulfate groups) proved IPC formation. DSC and XRD studies confirmed loss of LOR crystallinity. The sponges possessed interconnecting porous-network structures. The porosity, mean pore diameter, and bulk density of CH:CS (10:3) IPC sponges were 11.779%, 25.4 nm, and 0.670 g/mL, respectively. They showed complete wetting within seconds, gradual size-expansion within minutes and prolonged adhesion for hours. Controlled LOR-release profiles were tailored over 12h to satisfy individual patient needs. Monitoring of sponges via MRI proved their gastroretentivity for at least 5h.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Supelco
Acetic acid, analytical standard
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Magnesium stearate, technical grade
Sigma-Aldrich
Iron(III) oxide, hydrated, catalyst grade, 30-50 mesh
Sigma-Aldrich
Magnesium stearate, puriss., meets analytical specification of Ph. Eur., BP, ≥90% stearic and palmitic acid basis, ≥40% stearic acid basis (GC), 4.0-5.0% Mg basis (calc on dry sub.)
Sigma-Aldrich
D-Lactose monohydrate, ≥99% (HPLC), BioUltra
Sigma-Aldrich
D-Lactose monohydrate, tested according to Ph. Eur.
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
D-Lactose monohydrate, ACS reagent
Sigma-Aldrich
D-Lactose monohydrate, Vetec, reagent grade
Sigma-Aldrich
D-Lactose monohydrate, ≥98.0% (HPLC)
Sigma-Aldrich
Iron(III) oxide, dispersion, nanoparticles, ≤110 nm particle size, 15 wt. % in ethanol
Millipore
Bifido Selective Supplement B, suitable for microbiology
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 20 nm avg. part. size, 5 mg/mL in toluene
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 10 nm avg. part. size, 5 mg/mL in toluene
Sigma-Aldrich
Iron(II,III) oxide, nanopowder, 50-100 nm particle size (SEM), 97% trace metals basis
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
Iron(II,III) oxide, powder, <5 μm, 95%
Sigma-Aldrich
Iron(III) oxide, ≥99.995% trace metals basis
Sigma-Aldrich
Iron(II,III) oxide, 99.99% trace metals basis
Sigma-Aldrich
Iron(III) oxide, nanopowder, <50 nm particle size (BET)